

MULTI-PRONGED APPROACH TO ELUCIDATE NITRATE ATTENUATION IN SHALLOW GROUNDWATER

Roland Stenger¹, Juliet Clague¹, Simon Woodward¹, Uwe Morgenstern², Tim Clough³

¹Lincoln Agritech, Hamilton, NZ ²GNS Science, Lower Hutt, NZ ³Lincoln University, Lincoln, NZ

MEASURE. MODEL. MANAGE.

Nitrate attenuation

Example of a groundwater flow path

MEASURE. MODEL. MANAGE.

Multi-pronged approach to elucidate nitrate attenuation

Field

experiments

Push-pull tests

(location of denitrification activity)

Slug and tracer tests

(hydraulic conductivity, flow paths)

Groundwater monitoring

- Redox assignment
- Nitrate isotopes Clague et al., 2015
- Excess N₂
- Age-dating

Lab experiments

Incubation exp.

(electron donors, microbial capacity), Clague et al., 2013 + 2015

Synthesis

supported by modelling

Woodward et al., 2013 + 2015

Lake Taupo catchment

Land use intensification threatening still near-pristine water quality:

≻ Total N: 70 µg/L
≻ Total P: 5.6 µg/L
≻ Secchi depth: 1<u>4.6 m</u>

MEASURE. MODEL. MANAGE.

St. / Albert

Field site: Waihora Station

MEASURE. MODEL. MANAGE.

Vadose zone research: Spydia

Barkle et al., 2011, 2014a, 2014b Wöhling et al., 2009, 2012

Groundwater monitoring

Waihora well field

- 11 multilevel well clusters on a hillslope (approx. 6000 m²)
- 2 5 screens per cluster
- Well depths: 1.5 to 9 m
- Screen max. 5 m below water table
- Downslope transect (D)
- Upper (U) and lower (L) perpendicular MLW clusters

Downslope well transect (D)

Distance (m)

Multi-pronged approach to elucidate nitrate attenuation

Field **v** experiments

Push-pull tests

(location of denitrification activity)

Slug and tracer tests

(hydraulic conductivity, flow paths)

Groundwater monitoring

- Redox assignment
- Nitrate isotopes Clague et al., 2015
- Excess N₂
- Age-dating

Lab experiments

Incubation exp.

(electron donors, microbial capacity), Clague et al., 2013 + 2015

Synthesis

supported by modelling

Woodward et al., 2013 + 2015

Redox assignment: Ecological succession

Decreasing energy yield

Aerobic Decomposition $CH_{2}O + O_{2} \rightarrow CO_{2} + H_{2}O$ **Heterotrophic Denitrification** $5CH_{2}O + 4NO_{3}^{-} \rightarrow 2N_{2} + 4HCO_{3}^{-} + H_{2}CO_{3} + 2H_{2}O$ **Manganese (IV) Reduction** $CH_2O + 2MnO_2 + 3H^+ \rightarrow 2Mn^{2+} + HCO_3 + 2H_2O$ Ferric Iron (III) Reduction $CH_2O + 4Fe(OH)_3 + 7H^+ \rightarrow 4Fe^{2+} + HCO_3^- + 10H_2O$ **Sulfate Reduction** $2 CH_2O + SO_4^{2-} \rightarrow HS^- + 2 HCO_3^- + H^+$ **Methane Generation** $2CH_2O + H_2O \rightarrow CH_4 + HCO_3^- + H^+$

anoxic

Redox assignment: Classification scheme

McMahon and Chapelle (2008)						
		Criteria for inferring process from water-quality data US default thresholds				
		DO	Nitrate-N	Manganese	Iron	Sulfate
Redox category	Redox process	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Oxic	02	≥0.5		< 0.05	<0.1	
Suboxic	Suboxic	<0.5	<0.5	<0.05	<0.1	
Anoxic	NO3	<0.5	≥0.5	<0.05	<0.1	
Anoxic	Mn(IV)	<0.5	<0.5	≥0.05	<0.1	
Anoxic	Fe(III)/SO4	<0.5	<0.5		≥0.1	≥0.5
Anoxic	Fe(III)	<0.5	<0.5		≥0.1	≥0.5
Mixed(anoxic)	Fe(III)-SO4	<0.5	<0.5		≥0.1	≥0.5
Anoxic	SO4	<0.5	<0.5		≥0.1	≥0.5
Anoxic	CH4gen	<0.5	<0.5		≥0.1	<0.5
		Site-specific thresholds				
		1.5	0.1	0.3	0.4	4.0

Default thresholds 'broadly applicable to regional US aquifer systems'
 Site-specific thresholds used where indicated by own data

Redox assignment: Site-specific thresholds

Redox assignment: Downslope well transect (D)

Oxic

Anoxic

Redox assignment: Well field

Vertical redox gradients common

- Oxic groundwater throughout investigated depth range at 4 MLW clusters
- Anoxic groundwater underlying oxic groundwater at 7 of the 11 MLW clusters

Substantial denitrification potential

Nitrate isotopes: Evidence for denitrification?

- Some data indicate denitrification
- Challenges: variability, measurement uncertainty at low concentrations, insufficient N mass (c.f. Clague et al., 2015)

Excess N₂: Evidence for denitrification?

- **Excess N₂ increase concurrent with NO₃-N decrease**
- Challenges: uncertainty, effect of lateral flow paths, temporal variation of nitrate inputs
- Improvement: additional neon measurements

Subsurface Mean Residence Times (MRTs) derived from tritium
 Exponential-piston flow model with 50% mixing applied

Land use history: minimum nitrate conc. of land surface recharge
 Hydrology: impeded vertical flow through Palaeosols
 Redox : oxic conditions restricted to young water

Land use history: nitrate concentration of land surface recharge
 Hydrology: impeded vertical flow through Palaeosols
 Redox : oxic conditions restricted to young water

Land use history: nitrate concentration of land surface recharge
 Hydrology: impeded vertical flow through Palaeosols
 Redox : oxic conditions restricted to young water

Land use history: nitrate concentration of land surface recharge
 Hydrology: impeded vertical flow through Palaeosols
 Redox : oxic conditions restricted to young water

Multi-pronged approach to elucidate nitrate attenuation

Field **v** experiments

Push-pull tests

(location of denitrification activity)

Slug and tracer tests

(hydraulic conductivity, flow paths)

Groundwater monitoring

- Redox assignment
- Nitrate isotopes Clague et al., 2015
- Excess N₂
- Age-dating

Lab experiments Incubation exp. (electron donors, microbial capacity),

Clague et al., 2013 + 2015

Synthesis

supported by modelling

Woodward et al., 2013 + 2015

Ksat in TI tends to be greater than in OI, but substantial variation
 Ksat generally decreasing with depth

> Oxic groundwater observed nearly across the entire Ksat range

MEASURE. MODEL. MANAGE.

Anoxic groundwater observed at Ksat up to 1 m d⁻¹

MEASURE. MODEL. MANAGE.

Multi-pronged approach to elucidate nitrate attenuation

Field

experiments

Push-pull tests

(location of denitrification activity)

Slug and tracer tests

(hydraulic conductivity, flow paths)

Groundwater monitoring

- Redox assignment
- Nitrate isotopes Clague et al., 2015
- Excess N₂
- Age-dating

Lab experiments Incubation exp. (electron donors,

microbial capacity), Clague et al., 2013 + 2015

Synthesis

supported by modelling

Woodward et al., 2013 + 2015

Palaeosols (and woody debris) fuelling denitrification
 Lower rates than in A horizon: C quality, microbial constraints
 Rates still high enough to attenuate root zone losses

Multi-pronged approach to elucidate nitrate attenuation

Field

experiments

Push-pull tests

(location of denitrification activity)

Slug and tracer tests

(hydraulic conductivity, flow paths)

Groundwater monitoring

- Redox assignment
- Nitrate isotopes Clague et al., 2015
- Excess N₂
- Age-dating

Lab **cxperiments**

Incubation exp.

(electron donors, microbial capacity), Clague et al., 2013 + 2015

Synthesis

supported by modelling

Woodward et al., 2013 + 2015

Synthesis: Toenepi catchment 15 km², intensive dairying

THANK YOU

This research was conducted under the "Groundwater Quality" and "Groundwater Assimilative Capacity" Programmes funded by MBIE

Age-dating: Chemistry vs. MRT

TU (-), DO and NO_3 -N (mg L⁻¹)

Pragmatic starting point for resource users/managers:

Field

experiments

Push-pull tests

(location of denitrification activity)

Slug and tracer tests

(hydraulic conductivity, flow paths)

Groundwater monitoring

- Redox assignment
- Nitrate isotopes Clague et al., 2015
- Excess N₂
- Age-dating

Lab experiments Incubation exp.

(electron donors, microbial capacity), Clague et al., 2013 + 2015

Synthesis

supported by modelling

Woodward et al., 2013 + 2015